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ABSTRACT 

The design select ion and the  fabricat ion techniques used 
~* 

turbine components f o r  the oxidizer turbopump of the M-1 Engine 
The nnzzle reT.rersing ~ a n e  and rotor  assezblies rlis~ixsed vere 
from Inconel 718. 
sheet metal blades as well  as t o  a t tach  them t o  the discs  or shrouds. 

The electron-beam welding process was used t o  construct the  

t o  produce the 
a re  described. 
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This repor t  presents t he  design select ion and the fabr ica t ion  techniques used 
t o  prodwe the nozzle, ro tor ,  and reversing vane assemblies f o r  the M-1 oxidizer 
turbine.  These assemblies axe constructed from Inconel 718. I n  a l l  cases,  the  hollow 
sheet metal  blades are electron-beam welded t o  the d isc  and the  shroud or  both shrouds 
(as i n  the  case of the s ta t ionary pa r t s ) .  The weld j o i n t s  are supplemented by brazing 
f o r  vibr5tforr dampening. After considerable e f f o r t ,  a j o i n t  configuration w a s  
developed t.l;at, s i j c c e s s f u l l ~  solved the d i f f i c ~ i l t  tzsk of attacking the hollrm sheet 
metal blades t o  a ro to r  disc .  
weld the  joizlts, r e s t r i c t e d  vendor select ion t o  those few having electron-beam welding 
equipment of su f f i c i en t  power and chamber s i ze .  The components described i n  t h i s  
repor t  were fabricated by the J e t  and Ordnance Division of Thompson-Ram0 Wooldridge, 

The electron-beam weld process, which w a s  selected t o  

Inccrp9reted cf Cle-..elssd, Zhio. 

11. INTRODUCTION 

The pumping system for the l iquid propel lant  M - 1  engine consis ts  of two separate 
twbopmps ,  each havir?-g a direct-dr ive turbine. 
t i o n  prodjct.s of l iqil id oxygen and liquid hydrogen as  drive gas t o  the turbines ,  which 
are  airranged i n  s e r i e s .  Figure No. 1 shows a mock-up of the M-1 engine del ineat ing 
the maJor camponents of the ecgine a s s e b l y .  

A gas generator supplies the  combus- 

The two-stage prototype turbine of the M-1 Oxidizer Turbopump (Figure No .  2)  
discussed i n  t h i s  report  was prszeded by a single-stage turbine design f o r  the 
i n i t i a i  oxldizer turbopump development. 
single-stage turbine design t o  permit the attachment of shrouded ro to r  blades t o  the 
d isc .  To  expedite fabr ica t ion ,  the  f i r s t  two ro to r s  were manufactured with unshrouded 
blades. These were machined from a sol id  disc.  The s o l i d i t y  of the preferred f ir-  
t r e e  design with shrouded replaceable blades was somewhat compromised t o  minimize 
the large blade overQang t h i t  would be required t o  achive the desired so l id i ty .  

A f i r - t r e e  attachment was provided i n  the 

*I 

Seeking t o  minimize weight while permitting the use of a shrouded design as 
well as  eLiminating any 1l1oStzslons zpon s o l i d i t y  or other aerodynamic fea tures  of 
the Mociel II two-stage t;lrbir,e, the Aerojet-General Corporation undertook a research 
t o  a sce r t a in  an economica.1 method f o r  fastening sheet metal blades t o  the ro to r  discs  
as  wel l  as t o  the ro tor  and s t a t o r  shrouds. 

Weight considerations d ic ta ted  hollow ro tor  and s t a t o r  blades, which were a l s o  
desirable  because they are  not subjected t o  as severe thermal gradients as a re  the  
so l id  blades.  >Xing t h i s  study, the process of electron-beam welding w a s  introduced 
for consideration, This process appeared t o  be most su i tab le  fo r  the design being 
considered. A design was  f i n a l l y  selected wherein the blades a re  electron-beam b u t t  
welded i n  machined s l o t s  i n  the disc .  These machine s l o t s  have the exact prof i le  of 
the blade. Hmever, t h i s  design u t i l i zed  a new and unfamiliar mater ia l  (Inconel 718) 
a s  wel l  as a new and r e l a t i v e l y  undeveloped welding process (EB welding). A s  a 
r e s u l t ,  a number of problems were encountered, but  with appropriate development 
e f f o r t  these were overcome. 
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Figure 1 

M-1 Engine Mockup 
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The nozzle and reversing vane assemblies were o r i g i n a l l y  hollow blades t h a t  were 
gas tungsten a r c  welded (GTAW) t o  s l o t s  i n  the  shrouds, These were a l s o  changed t o  
electron-beam welded assemblies. 
design of another turbine,  excessive weld shrinkage occurred during GTAW welding of 
the  nozzles t o  the shroud, Figures No. 3p NQu;.4jr  and NO. 5 shoQ t h e  completed nozzle 
assembly, the reversing vane assembly, and the  completed r o t o r  assembly, respect ively.  

This r e su l t ed  from an experience where, i n  a similar 

The aerodynamic and mechanical design of t he  components discussed i n  t h i s  
repor t  have been described i n  previously published repor t s .  (1) (2)  

The discussion i n  t h i s  repor t  i s  l a rge ly  concentrated upon those methods and 
procedures t h a t  are considered t o  be technological advances; conventional p rac t i ces  
a r e  not del ineated,  

111. TECHNICAL DISCUSSION 

A. HARDWARE DESCRIPTION 

Figure No. 2 shows the  turbine components t h a t  a r e  discussed i n  t h i s  r epor t .  
These are  the nozzle assembly (P/N 286513), the  reversing vane assembly (P/N 286557), 
and the ro tor  assembly (P/N 286527). 
subassembly stage 1 (P/N 286528), the  ro to r  subassembly s tage 2 (P/N 286533), and the  
ro to r  hub (P/N 1119263). 
which makes t h e i r  s i ze  s ign i f i can t .  

The ro to r  assembly i s  b u i l t  up from t h e  r o t o r  

The mean diameters of a l l  of these assemblies i s  33-in. 

The two types of blades, the high reac t ion  p r o f i l e  (Figure No. 6)  designed 
f o r  the nozzle and the  low reac t ion ,  impulse, p r o f i l e  (Figure No. 7) designed f o r  both 
ro to r s  and the  reversing vane assemblies a re  fabr ica ted  from 0.063-in. t h i ck  Inconel 
718 sheet metal. 
s l o t s  cut  by means of the e l e c t r i c a l  discharge machining (EDM) process i n t o  s t a t o r  
shrouds as well  as rotor discs  and shrouds. 
d i sc  and blade-to-shroud j o i n t  configurations. 

In  a l l  instances,  t he  blades a re  electron-beam (EB) welded i n t o  

Figure N o .  8 shows a t y p i c a l  blade-to- 

1. Rotor Assemblv 

I This assembly i s  composed of the  ro to r  hub, the  ro to r  subassembly 
The rotor  hub i s  p i lo ted  on the s h a f t  stage 1, and the  ro tor  subassembly s tage 2. 

and the torque i s  transmitted from the  hub t o  the  sha f t  through a sp l ine .  A 
p a r a l l e l  face lug coupling acts as the  in t e r f ace  between the  ro tor  hub and the  ro to r  
d i sc  subassemblies. 
assemblies on the hub. Nine boLts a re  used t o  clamp the two conical d i sc s  together 
(see Figure No. 2) .  

This coupling t ransmits  t he  torque and p i l o t s  the  two sub- 

‘I’Beer, R . ,  Aerodynamic Design and Estimated Performance of a Two-Stage Curt is  
Turbine f o r  the Liquid Oxygen Turbopump of the M-1 Engine, NASA Report No. 
CR 54764, 19 November 1965 

‘‘’Roesch, E . ,  Mechanical Design of a C u r t i s  Turbine f o r  the  Oxidizer Turbopump 
of the  M-1 Engine, NASA Report No. CR 54815, 15 June 1966 
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Figure 3 

Iiozzle Assembly 
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Figure 4 

Reversing Row 

Page 6 



Figure 5 

Rotor Assembly 
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Figure 8 

Typical Electron-Beam Veld Configuration 
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The blades aye fastened t o  the dlsc and the stj jezd as  previcusly 
The ro tor  subassembly stpage 1 blading has 98 blades t h a t  a re  shrouded discussed. 

i n  packages of four and f i v e  blades each, while the ro tor  subassenibly stage 2 
blading contairrs 34 blzdes. 
blades each. 

T k s e  are  also sk.soxded i? packages of four and f i v e  

2. Nozzle Asseably 

n- ILLS .5,ss3ribP5 f z z t - x z s  t w o  s e x 2  (oze -pTece) s ~ . s ~ u d s  -,q~.ck: sLpport 
t he  43 nozzle vanes. 
by means of a flange on t h e  a i t e r  skroud. 
s t ruckme and the nozzle assembly a l l w e d  the design sham i n  Figure No. 3. 
membrane (9.040-in. t h i ck )  supported by the inner shroud r ing,  and a pa r t  of t h i s  
assembly, provides the closwes between the nozzie block and the  i n l e t  ruaiilfuid flange. 

The assembly i t s e l f  i s  supported by the turbine i n l e t  manifold 
S i m i l a r  thermal growth i n  the support 

A t h i n  

3. Heversing Vane Assembly 

To accommod~te the difference i n  t h e r m 1  expansion between the 
reversing vane assembly and the main  casing flange, the reversing vane assembly w a s  
segnentcl i n t o  six subsect?ozs. 
which i s  s3ieided from the high gas ve loc i t ies  and high heating r a t e s .  The support 
r i n g  i s  he ld  i n  place by the main casing flange of the turbine.  

These subsections are  assembled i n  a support r i n g  

B. 3ESIGN AND MATEZ.%S SEUCTION 

1.. Rotor Assemkly 

a. ReqTJirements 

The req-Lirements f o r  the rotor mechanical design were: 

(1) Light weight. 

(2) 

( 3 )  Minirn-an thermd. s t r e s ses ,  

No ~ 5 & l ? , t i o r ?  of any aerodynamic fea tures .  

(&) 

(5 )  Production of 36,000 HP a t  4,000 rpm. (This power-speed 

(6) 
The m m i m m  gas txmperature i s  1000°F and the pressure down- 

Advance i n  the technology of the manzfact-uing processes. 

combination resn1t.s i n  low c a i t r i f u g a l  h t  high bending blade forces .  ) 

vohme) water vapor. 
stream of the nozzle 100 t o  '230 psla.  

The t n b i n e  drive gases a re  9% hydrogen and 10% (by 

b. Select.ed Design 

The deslgn selected (see Figare No.  2)  appears t o  fulfill t.he 
abow req-direments as f o l h w s  : 



(1) 
which foym a box s t ructure  and through the use of t h e  hollow blades.  

Light weight i s  achieved through the  use of the  t h i n  d i sc s  

(2) Welding t h e  blades t o  the  d isc  and t h e  shroud completely 
eliminated any r e s t r i c t ions  upon s o l i d i t y  or axial plan configuration. 

(3)  The sheet  metal blade w a l l  hea ts  uniformly t o  minimize 
therm1 s t r e s ses .  
t i v e  r 5 d l a l  growth of the  d iscs  i n  re la t ionship  t o  the  hub. 

The coupling between the  hot d i scs  and t h e  cold hub allows rela,- 

(4) A t  t h e  time t h i s  design was selected,  the but t  welding 
of sheet metal blades i n t o  machined s l o t s  by electron-beam welding was new. Also, 
the  electron-beamwelding process was new and the re  was l i t t l e  experience with i t s  
appl icat ion t o  Inconel 71.8. 

2. Stat or Assemblies 

The requirements f o r  the s t a t o r  assemblies a re  i d e n t i c a l  t o  the ones 
f o r  t he  r o t o r  assembly. 
t k e  pressure loads on the  nozzle assembly. 

A maximum nozzle upstream pressure of 31.0 p s i a  determines 

The same pr inc ip les  used f o r  the  r o t o r  assemblies were again used 
t o  sa.54sfy the  s t a to r  requirements. However, it w a s  found t h a t  both the GTAW and 
EB welding processes were applicable.  I n i t i a l l y ,  drawings f o r  GTAW welded s t a t o r  
assemblies were released. However, similar GTAW welded s t a t o r  assemblies experienwd 
severe wsld shrinkage problems i n  another turbine designed by Aerojet-General. They?- 
fore ,  i t  was decided t o  apply the  electron-beam welding process t o  t he  s t a t o r  assemblies 
i n  the  same manner as it i s  used f o r  the ro to r  assemblies. 

3 .  Material Select ion and Material  Propert ies  

a. Turbine Component Material  Requirements 

(1) High s t rength a t  operating temperature, which a lhws  t?iir, 
ersss-se:tlons with a corresponding weight saving and favorable thermal s t r e s s  cor- 
d i t i ons  e 

(2) Good elongation a t  operating and cryogenic temperatures 
Ihe tu rb ine  gas propert ies  r e s u l t  i n  very high heat  t r ans fe r  r a t e s  t o  flow passa.g? 
sxf&,ces. The resu l t ing  high thermal s t r e s ses  require  duc t i l e  mater ia l  t o  prevent 
sxrf ace cracks e 

(3) Good weldabi l i ty  because minimum weight construction can 
be obthined through the use of welded designs. 

(4 )  

( 5 )  Good machineability. 

Good r epa i r  weldabi l i ty  i n  the  heat  t r e a t e d  condition, 

(6) Freedom from hydrogen embrittlement, 

(7) Good res i s tance  t o  corrosion and oxidation. 
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b. Inconei 718 

A t  the  time of material  select ion,  there  were numerous mater ia ls  
(i .e . ,  A-286 and the  precipitation-hardenable s t a in l e s s  s t e e l s )  for  application a t  
temperatures up t o  1000°F. Nickel-base precipitation-hardened super-alloys, such as  
Pene' 41 and Hastelloy R-235, were available f o r  applications i n  excess of 1400°F. 
It was found t h a t  Inconel 718 appeared t o  s a t i s f y  the temperature range a t  which the 
M-2  oxidizer turbine would operate and it s a t i s f i e d  the majority of the indicated 
requirenieiits. 
from -423°F t o  1350°F. 
electron-beam weld process was unknown a t  t h a t  time. 
leading t o  the se lec t ion  of Inconel 718 was i ts  superior :zf:;xSr weldabi l i ty  (TIG) 
i n  the  aged condition. This charac te r i s t ic  was  considered mandatory i n  the  fabrica-  
t i o n  or i u g e  turbine components. 

I 

I Iilconel 718 had good strer&h 2nd toughness at. tmperz tx res  ranging 
It a l so  had good weldabili ty,  but i t s  compatibil i ty with the 

However, the decisive f ac to r  

I 

The Inconel 718 material  heat treatment (anneal, age and s t r e s s  
r e l i eve )  specif icat ions were developed i n  p a r a l l e l  with the  fabr ica t ion  of the 
components a ( 3 )  The first was an  
1800°F solut ion treatment and 1325 'F/ll5O0F combination aging cycle recommended f o r  
s t ress-rupture  controlled appl icat ions where notch-duct i l i ty  i s  important. 
heat treatment i s  recommended for  a l l  high temperature appl icat ions.  
spec i f ica t ion  developed w a s  a 1950°F solution treatment and 135O0F/12OO0F combination 
aging cycle. It i s  recommended f o r  tensi le- l imited appl icat ions and cryogenic service.  
The second treatment i s  superior f o r  assuring age-hardening response i n  large forgings 
t h a t  have a coarse g r a i n  s t ruc ture .  

Two heat. treatment specif icat ions were developed. 

This 
The second 

All mater ia l  f o r  the ro to r  and s t a t o r  assemblies was processed 
with a 1950°F solut ion treatment although it might now seem preferable t o  use mater ia l  
i n  accordance with the 1800"~ solut ion treatment f o r  the hot  turbine components. 
However, a t  the time the mater ia l  was selected,  Aerojet-General engineering was using 
the 1950°F solut ion treatment for  l o w  and high temperature applications.  Considering 
the low nominal turbine operation gas temperature of 730"F, it i s  evident t h a t  the 
mater ia l  used t o  manufacture the  t u r b i n e  components i s  adequate. 

The pr inc ipa l  m a t e r i a l  s t rength propert ies  of mater ia l  with a 
1950°F so lz t ion  treatment are  shown i n  Figure No.  9. 

C .  EIXCTRON-BEAM WELDING PROCESS FEASIBILITY STUDY 

As pointed out i n  the above mater ia l  discussion, the compatibil i ty of 
the electron-beam weld process with Inconel 718 was unknown. 
using samples was  i n i t i a t e d  t o  investigate the f e a s i b i l i t y  of EB welding the blades 
t o  the supporting discs  and shrouds. 

Therefore, a program 

'3'Inouye, F. T., H u n t ,  v., Janser,  G. R,, -and Frick,  V., Summary of Experience 
Using Alloy 718 f o r  M-1 Engine Components, NASA Report No. CR 54814, 15 Ju ly  1966 
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Concepts f o r  constructing the b l a d e - t o - r ~  j o i n t  were inms t iga t ed  early 
I n  the or ig ina l  design, the blades were welded t o  a t h i n  

These subassemblies were 
i n  the f e a s i b i l i t y  study. 
rim (Figure No.  lo), which formed a conical inner shroud. 
then welded t o  the rim. This design reqgired a three-dimensional programmer because 
the weld penetrat ion depths varied f romthe  leading t o  the t r a i l i n g  edge as a r e s u l t  
of the  blade p r o f i l e  and a conical inner shroud. Figure No. ll shows a simulated 
sample u t i l i z i n g  an AIS1 347 tube and an Inconel 718 p la t e ,  which w a s  welded from 
the top  s ide  i n  the view shown. 
peze t ra t ioz  wh5ch t w i e d  with the mount of clearacce b e t w e n  t k e  tube and the  p l a t e ,  

Figure No. 11 i l l u s t r a t e s  t he  problem of weld depth 

The design was simplified because of t he  complicated programming required 
i n  the contour weld and the  weld penetration problem, although t h i s  added sane dead 
weight t o  the rim. "he p ro f i l e  peripheral  weld w a s  omitted as shown i n  Figure No.  12. 
Weid sa.-' . - 

one sample has been welded from one s i d e  only and the other sample was  welded from 
both s ides  of the simulated disc.  Weld samples of the blade-to-shroud j o i n t  are  shown 
i n  Figme No. 14. 

p ~ e s  of the bide-to-disc joii i t  ut: shmri in Figure NO. 13. LIi this f i g i i e ,  

Further s implif icat ion i n  the geometry resu l ted  i n  the  f i n a l  j o i n t  con- 
Weld t e s t s  with these samples f igura t ion  shown i n  Figures No.  15  and No. 16. 

es tab l i shed  a minimuxn requirement of 0 .E5-in.  distance from the  surface t o  the 
center l ine  of the EB weld t o  prevent erosion such as i s  shown i n  the upper view of 
Figure No. 14. This minimum distance was establ ished based upon the erosion of 
samples with only a 0.090-in. distance and the successful welds a t  a distance of 
0.125-in. 

Samples were fabricated i n  a tee-shape f o r  t e n s i l e  t e s t i n g  the butt-weld 
j o i n t  (representing the blade-to-disc jo in t )  and shear j o i n t s  (representing the blade- 
to-shroud j o i n t )  (see Figures No, 17 and No.  18). A nicke l  base braze a l loy  conform- 
ing t o  AMs 4777 (I") was applied t o  one s ide of the sample t o  simulate the ac tua l  
design. Average room temperature t ens i l e  s t rength of the tee-shaped b u t t  weld j o i n t s  
was 174,000 p s i  with the f a i l u r e  occurring i n  the parent material .  "he shear j o i n t  
f a i l e d  i n  the weld a t  168,000 p s i  average s t r e s s .  
0.125-in. p l a t e  simulating the blade t o  assure f a i l u r e  i n  the  weld during the shear 
t e s t s .  The r e s u l t s  of these t e s t s  gave no indicat ion f o r  concern regarding the use 
of the thinner  0.063-in. w a l l  thickness mater ia l  i n  the ac tua l  configuration. 

The samples were constructed of 

The samples were welded using a weld schedule of a 2.0-in. gun-to-work 
distance,  50,000 vo l t s ,  325 milliampere beam current ,  and a 6.1 ampere focus current.  
The speed of t r a v e l  was 30-in. per minute on specimens welded on one s ide only and 
b i n .  per minute on specimens welded from both sides.  
for  a l l  samples requiring a contaur weld after the o r i g i n a l  concept. 

This weld schedule w a s  used 

The braze f i l l e t  was added t o  provide dampening of the blade and vane 
The first braze a l loy  used consisted of 8% gold and 1% nickel,  but  vibrat ions.  

it f a i l e d  t o  wet and f l o w  properly (see Figure No. 19). 
a l loy  conforming t o  AMs 4777 (SMW) provided a sa t i s f ac to ry  f i l l e t  f o r  v ibra t ion  
damping (Figure No. 19). 
based upon experience gained with braze t e s t  specimens prepared t o  determine wet- 
a b i l i t y  and f l o w  cha rac t e r i s t i c s  of the  Inconel 718 mater ia l .  The braze and heat 

The n icke l  base braze 

Brazing was accomplished during the heat treatment cycle 



Figure 10 

Blade-to-Disc J o i n t ,  Radial Contour Weld 
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Electron-Beam Weld Joint (Inconel 718 Plate-to-AIS1 347 
Tube), Depth of weld penetration is directly proportional 
t o  the gap width, There was no gap seen 011 the left  weld, 
while the r igh t  weld has a .OO&b, gapo This condition 
was observed under greater w i c a t i o n  of the specimen, 

The saxe specimens shm the weld Sead r e s d t i n g  frcm the  
electron beam impingenentwhich produced the weld seen 
in the top photo. 

F igure  11 

Weld Sample S imula t ing  t h e  Radial  Contour Weld and Blade-to-Shroud 
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ANTICIPATED 
WELD ZONE 

Figure l2 

Blade-to-Disc Joints, Axial Butt Jo in t  with Separate Rim Ring 
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V i e w  of the outer blade-to-skroud joint .  
tIhi.ck) eroded during elec5ron bean weldling. 

The thfn member (O.090-in. 
All material I s  A’I.loy 718. 

Cross-sectional view showing f u l l  weld penetration. 
w a s  performed from both s ides .  

The welding 

Figure 14 

Weld Sample, Axial B u t t  J o i n t  With Separate Ring on Shroud 
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Figure 15 

Final Joint  Configuration Before Welding 
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Top view of Alloy 718 tube 
welded t o  shroud joint, “he 
tube was plugged t o  prevent 
beam def lec t ion  and t o  m a i n -  
tain a constant cross-section 
area. 

Bottom view of t h e  same j o i n t  
shows no evidence of erosion 
o r  weld bumthrough. 

Cross-sectional view of the 
same specimen shows the weld 
nugget through the center of 
the shroud. This specimen 
was welded fraa om side 
0-0 

Figure 16 

Weld Sample, Final Shroud J o i n t  Configuration 
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Figure 17 

Pull Samples, Final Joint Configurations 
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Cross-sectj-on view of a T-weld specimen showing t h e  weld nugget 
through the  blade. 
a t  t h e  simulated blade-to-disc joi.nt, 

The weld specben has braze on t h e  r i g h t  side 

Typical w e l d  shear failiire of t h e  t e a t  spec.tJt;.en 
shown above, 

Figure 18 

Weld Pull Sample, F ina l  Shear Jo in t  Configuration, 
Before and After Tensile Test ing 
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Figure 19 

Combined EE weld-Braze Samples 
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treatment cycle of these specimens consisted of heating them t o  1925'F and holding 
a;t t h a t  temperature f o r  t e n  minutes i n  a vacuum. 
t o  room temperature, age hardened a t  1325'F f o r  e igh t  hours, and furnace cooling t o  
1200'F. This w a s  held f o r  a t o t a l  aging time of 20 hours. Hardness t e s t s  conducted 
with two samples showed a Rockwell "C" hardness of 19.5 t o  20.5 before brazing, 19.0 
t o  26.0 a f t e r  brazing, and 39.0 t o  42.0 a f t e r  aging. Another specimen was brazed by 
holding a t  1925'F f o r  ten  minutes, cooling t o  room temperature, so lu t ion  annealing 
a t  1925'F f o r  one hour, then subjecting it t o  the  regular  age cycle. F ina l  Rockwell 
"C" hardness was 39.0 t o  41.0. 
heat treatment after both cycles and t h a t  t h e  t e n  minute brazing cycle w i l l  provide the  
solut ion anneal. 

Then, the  specimens were air-cooled . 

This confirmed t h a t  Inconel 718 responds uniformly t o  

It was concluded t h a t  the  f e a s i b i l i t y  of electron-beam welding was demon- 
s t r a t e d  by obtaining j o i n t s  with s t rengths  as high as the  parent mater ia l .  
a l so  demonstrated t h a t  welds could be made without detrimental  e f f ec t s  ( i . e . ,  micro- 
f i s s u r e s ,  which subsequently became a problem and which a r e  fu r the r  de t a i l ed  i n  t h i s  
repor t ) .  
f a c t o r i l y  and a separate so lu t ion  anneal a f t e r  brazing w a s  unnecessary. 

These t e s t s  

The f e a s i b i l i t y  study confirmed t h a t  Inconel 718 could be brazed satis-  

D. FABRICATION OF COMPONENT PARTS 

A l l  t h e  development work reported i n  t h i s  sec t ion  was performed by the 
J e t  and Ordnance Division of Thompson-Ram0 Wooldridge (TRW) , Incorporated of Cleveland, 
Ohio. 

1. Rotor Blades and Nozzle Vanes 

The p r o f i l e s  a re  two piece constructions consisting of a formed 
sheet metal section and a t r a i l i n g  edge sect ion.  The two sect ions a re  jo ined  
together by electron-beam welding, and the  heavy t r a i l i n g  edge sec t ion  i s  milled 
and ground t o  the  f i n a l  blade configuration (Figure No. 20). 

The sheet metal sect ion of each p r o f i l e  i s  formed i n  multiple form 
d ie s  i n  f i v e  steps.  The sheet metal sect ions were s t r e s s  re l ieved a f t e r  t h e  four th  
and f i f t h  forming steps.  Considerable die  development and two s t r e s s  r e l i eve  cycles 
were necessary t o  overcome the "spring-back" i n  the  r e l a t i v e l y  unknown Inconel 718. 

The formed and square ended sheet metal portion of the  blade as 
well  as i t s  rectangular t r a i l i n g  edge sect ion a re  assembled i n  the  EB weld f i x t u r e  
with a gap between t h e  two p a r t s  of l e s s  than 0.0015-in. A 0.060-in. diameter weld 
wire, placed over the beam exposed s ide of the weld j o i n t ,  provided weld re inforce-  
ment on t h i s  s ide ,  while weld drop-through provided weld reinforcement on the other  
s ide.  
de l inea tes  t h e  weld schedule used f o r  both the  ro to r  blades and the  nozzle vanes. 
This j o i n t  i s  discussed f u r t h e r  under Section 111, E, 6, e of t h i s  repor t .  

This technique eliminated weld "suck-down" and voids. Figure No. 20 

The t r a i l i n g  edge sec t ion  of the  welded blade i s  milled, ground, 
and f a i r e d  t o  i t s  f i n a l  configuration. Then, t he  blade i s  machined t o  length as 
pa r t  of the preparation of the  blade-to-disc in te r face .  
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The contour of the  a i r f o i l  was inspected using a gu i l lo t ine  gage and - 
the  i n t e g r i t y  of the EB weld j o i n t  i s  ve r i f i ed  through X-ray and dye penetrant inspec- 
t ion .  

2. Preparation of Rotor Discs and Shrouds, and S ta to r  Shrouds 

The r o t o r  d i scs  and shrouds as we l l  as t h e  s t a t o r  shrouds were rough- 
machined and approximately 0.10-in. of stock was l e f t  f o r  f i n a l  machining with the  
following exceptions : 

a,  The outside diameter of the  r o t o r s  and t h e  ins ide  diameter of 
the  outer  s t a t o r  shrouds were f i n a l  machined i n  preparation f o r  the  cu t t ing  of t he  
p r o f i l e  s l o t s .  

b.  The inside diameter of the ro to r  shrouds and the  outs ide diameter 
of the  inner s t a t o r  shrouds were machined t o  0.050-in. stock on the  diameter i n  prepara- 
t i o n  f o r  cu t t ing  of the p r o f i l e  s l o t s .  These small amounts of stock were l e f t  t o  
allow f o r  adjusting the  blade th roa t  area,  which i s  accomplished through adjustment 
of the  blade-height (H)  before welding. 

During the e a r l y  phases of the  EB weld f e a s i b i l i t y  program, 
the gap between blade and d isc  became a parameter of major importance. The penetra- 
t i o n  of the  electron-beam was considerably reduced i f  the beam had t o  t r a v e l  through 
s ign i f i can t  gaps. 
blade, and the  blade and the  plug. 
Because of var ia t ions  i n  blade/vane geometry, it was necessary t o  custom cut  each 
s l o t  f o r  a given blade as described i n  t h e  ensuing discussion. Further, the EDM 
energy output had t o  be adjusted f o r  electrode erosion during the  cu t t i ng  process. 

A maximum gap of 0.008-in. was allowed between t h e  d i sc  and the  
This was based upon t e s t s  made with varying gaps. 

The too l ing  f o r  the  EDM machining of the p r o f i l e  s l o t s  cons i s t s  
of bas ic  holding and indexing f ix tu re s ,  and roughing and semi-finishing carbon e lec-  
t rodes.  These electrodes a re  t r u e  copies of the blades, cu t  on a duplicating machine 
from the ser ia l ized  blades o r  vanes. Each blade end w a s  copied on a cu t t ing  electrode 
and had i t s  custom f i t  s l o t  i n  the  shroud o r  d i sc .  Figure No. 2 1  shows such a n  
e lectrode.  All of the  s l o t  cu t t i ng  was done on Cincinnati E l e c t r i c a l  Discharge 
Machines . 

Prior  t o  machining of the s l o t s ,  a map was compiled f o r  
posit ioning the rotor  blades by weight and a i r f o i l  geometry. The weight considera- 
t i o n  minimizes out-of -balance conditions i n  the f in i shed  assembly and the  a i r f o i l  
geometry i s  used t o  e s t ab l i sh  the t o t a l  required t h r o a t  a reas  for ro to r s  and s t a t o r s ,  
After d i scs  o r  outer s t a t o r  shrouds were i n s t a l l e d  and indexed i n  the  holding f i x t u r e ,  
a roughing cu t  was made with the carbon electrode t o  approximately O.03O-h. of the 
required depth. Then, the  electrode was dressed f o r  the  semi-final cu t  t o  0,010-in. 
of t h e  required depth. For the f i n a l  cu t ,  the  mating blade i t s e l f  was used as t h e  
t o o l  t o  cu t  the s l o t  t o  i t s  f i n a l  depth. This gives an almost zero gap b u t t  j o i n t  
between the  blade and the d i sc  (or vane and shroud). 
followed f o r  each bu t t  j o i n t  t o  achieve a t i g h t  f i t  with a minimum gap between pa r t s .  

This three-step procedure was  



Figure 2 1  

Slot  Cutting Electrode f o r  Rotor 
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E. lxTMMy ROTOR PROGRAM, ELECTRON-BEAM WELD DEVELOPMENT 

1. J u s t i f i c a t i o n  

The EB weld f e a s i b i l i t y  program had been conducted under labora tory  
conditions a t  the f a c i l i t y  of an EB weld machine manufacturer. The samples were of 
simple geometrical shape, allowing good gap cont ro l ,  and small i n  absolute dimensions. 
The mater ia l  was randomly se lec ted  Inconel 718 and s t a i n l e s s  s t e e l .  

It appeared mandatory t o  develop proper techniques using prototype 
samples a t  the  vendor f a c i l i t y  and f o r  h i s  welding machine. 
complex p r o f i l e  shape was t o  be used t o  determine gap e f f ec t s .  The blades were t o  
be prepared by the same processes as would be t h e  f i n a l  blade. 
t o  be cu t  by the EDM process r a the r  than mil l ing,  which i s  s ign i f i can t  because t h e  
EDM process shows Laves Phase surface i r r e g u l a r i t i e s  if Laves Phase i s  present i n  the  
mater ia l .  Conventional machining, such as mi l l ing  and grinding, r e s u l t s  i n  a metal 
surface smear which covers the  small Laves Phase surface imperfections giving t h e  
appearance of a smooth surface without any apparent defects .  Material  t h a t  was 
representat ive of the hea ts  of the  mater ia l  f o r  the  a c t u a l  hardware was t o  be used. 
Brazing was t o  be attempted with prototype mater ia l  and c leanl iness  l e v e l s  i d e n t i c a l  
t o  the ones f o r  the prototype hardware. 
configuration were t o  be obtained. 

Further ,  the  a c t u a l  

The t e s t  s l o t s  were 

F ina l ly ,  p u l l  samples of the  ac tua l  j o i n t  

It was questionable whether X-ray inspection would provide con- 
c lusive information about t h e  qua l i t y  of the blade-to-disc and blade-to-shroud 
weld j o i n t s .  For t h i s  reason Aerojet-General regarded it e s s e n t i a l  t o  award a 
contract  t o  the Thompson-Ramo-Wooldridge Corporation f o r  the purpose of proposing 
and developing inspection procedures using dummy ro to r s .  

Uncertainty i n  the  s t r e s s  and v ib ra t ion  ana lys i s  of the  ro to r  blade 
packages indicates  a d e s i r a b i l i t y  f o r  experimentally determining the  n a t u r a l  frequen- 
c i e s  of ro to r  blade packages consis t ing of four  and f i v e  blades. 

Three dummy ro to r s  were ordered from the  vendor; two of these 
dummies t o  simulate the  configuration of the second-stage r o t o r  and t h e  remaining 
dummy t o  simulate the f i r s t - s t a g e  ro to r .  Figure No. 22 shows these dummy ro to r s .  
One dummy of each configuration was used t o  e s t a b l i s h  the  na tu ra l  frequencies of 
the blade packages. The second, stage-two dwnmy was cu t  up t o  evaluate weld j o i n t  
configuration and weld j o i n t  i n t eg r i ty .  
procedures and t o  machine p u l l  samples. 
opportunity t o  t e s t  too l ing  t h a t  was i d e n t i c a l  t o  t h a t  intended f o r  the  prototype 
hardware. 
evaluate 
e~sewhere"' and are summarized i n  the  following discussions e 

This was a l s o  done t o  e s t a b l i s h  inspection 
Lastly, the dummy ro to r s  provided an 

Aerojet-General awarded a contract  t o  Thompson-Ramo-Wooldridge t o  
The r e s u l t s  of t h i s  evaluation have been reported dummy ro to r .  

'''Ka,ne, R. F , ,  Aerojet-General M - 1  Oxidizer Program, Evaluation of Second-Stage 
Dummy Rotor, S/N 1, Thompson-Ramo-Wooldridge, Inc., May 1965 
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Figure 22 

First-Stage and Second-3 tage Junrsy Rotors 
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2. Pre-lhmy Rotor Weld Development 

. 

Prior t o  welding the f i rs t  dummy ro to r ,  Thompson-Ramo-Wooldridge 
conducted an extensive weld development program using the  weld samples shown i n  
Figures No., 8 and No. 23. Microfissuring was encountered i n  most weld samples. 

The microfissures were i f l tergranularIy perpendicular t o  the  
weld and associated with eu tec t i c  melting i n  the  gra in  boundaries of the  parent 
mater ia l  immediately adjacent t o  the  weld. 
was dependent upon the  electron-beam weld schedule. 
weld schedule tended t o  r e s u l t  i n  the l e a s t  amount of microfissuring. 
beam gun-to-work distance a l s o  appeared t o  be c r i t i c a l ;  the  c loser  t he  gun was t o  
the  work, the l e s s  severe was the  microfissuring i n  the n a i l  head and the  shank of 
the electron-beam weld, Fixturing a c c e s s i b i l i t y  made it necessary t o  use a 3.5-in. 
gun-to-work distance as compared with the  2.0-in. dis tance used during the e lec t ron-  
beam welded f e a s i b i l i t y  s tudies .  

Tests  indicated t h a t  t h i s  micro-cracking 

The electron-  
A high vol tage,  rap id  speed 

The m i l l  heat  of mater ia l  a l s o  appeared t o  have an e f f e c t  upon the  
seve r i ty  of the microcracking. 
of weld schedule development showed no s igns of cracking while others  cracked qui te  
severely. A s m a l l e r  grain s i ze  mater ia l  a l so  appeared t o  reduce t h e  amount of 
microcracking. For t h i s  reason, the 1750'F so lu t ion  anneal mater ia l  could possibly 
be b e t t e r  su i t ed  f o r  electron-beam welding than the  1950'F anneal condition because 
the  lower solutioning temperature is more conducive t o  a f i n e r  gra in  s i z e  mater ia l .  

Some hea ts  of mater ia l  examined during the  period 

The mic ro f i s su r ing  was most severe i n  the  a rea  of the  n a i l  head 
(see Figure N o .  23) where some f i s s u r e s  were 0.030-in. long. 
f i s s u r e  length of 0.005-in. was found. Microfissures exis ted,  i n  some cases, every 
OoO3O-in. t o  0.050-in. along both sidss of the  n a i l  head and the  stem. Figure No .  24 
i s  an enlargement of a t y p i c a l  sect ion of a weld sample. 

Along the stem, a 

Samples of the type shown i n  Figure No. 8 displayed not only 
microfissuring but a l s o  poros i ty  i n  the  molten zone. 
t o  inadequate cleaning of the blade and the  s l o t  before assembly. 

This poros i ty  was a t t r i b u t e d  

3. Manufacturing of Dummy Rotors 

The dummy assemblies were fabr ica ted  using prototype blades and 
sect ions of prototype outer shrouds from the reversing vane assemblies. The d isc  
por t ion  of the  assembly was  simulated by using a nearly-rectangular block of mater ia l  
approximately six-inches long, four-inches wide, and two-inches th ick .  The center  
hub sec t ion  was machined t o  hold f i v e  blades on one s ide and four  blades on the  other  
s ide  ., 

The dwnmies were fabr ica ted  e n t i r e l y  from Inconel 718 mater ia l  
purchased i n  the  1950'F anneal condition i n  accordance with Aerojet-General Specif ica-  
t i o n  AGC-44152 with respect  t o  the  sheet stock and AGC-44151 with respect t o  the bars 
and forgings. Because double vacuum melted mater ia l  was reported t o  be more su i t ab le  
for electron-beam welding as it i s  l e s s  suscept ible  t o  "blow holes" occurring i n  t h e  
weld, a l l  forging mater ia l  purchased w a s  of the double vacuum melted type. 
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Figure 23 

Weld Sample and Schematic of Microfissure Pattern 
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Figure 24 

Photomicrograph Showing Microfissuring on Typical Nail Head 



The s l o t s  fo r  t he  blades were cu t  i n t o  the d isc  and shroud sect ion 
i n  a manner iden t i ca l  t o  the prototype discs. 

Because of porosi ty  problems i n  the electron-beam welds as wel l  as 
a l i g h t  oxide t i n t  on the e l e c t r i c a l  discharge machined surfaces of the hub, shroud" 
plugs, and outer shroud, it was necessary t o  p ick le  the components i n  a f e r r i c  chloride 
so lu t ion  p r i o r  t o  welding t o  remove all surface contamination. 
of the  solut ion was 105OF. 
ponents were withdrawn f r o m  the pickling tank and r insed  i n  hot water. 
examination of the EDM surfaces revealed them t o  be covered with a black coating which 
would not wet and caused defects i n  the EB welds. 
stream spray, the components were repickled. Because the  black coating reappeared, 
pickling times approaching 20 minutes were found necessary t o  obtain a contaminant- 
free EDM surface. 

Operating temperature 
After a normal pickl ing time of f i v e  minutes, the com- 

A v i sua l  
1 -  

After removing the coating w i t h  a 

The composition of the black coating was  not determined. 

The blades were or ig ina l ly  cleaned using a dry glass  bead blast t o  
remove the  oxide formed i n  the s t r e s s  re l ieving operation. Pickling w a s  not used 
because there  was a danger of trapping acid i n  the t r a i l i n g  edge of the blade. A 
severe porosi ty  condition i n  the outer shroud electron-beam weld on the first dummy 
w a s  found and it w a s  necessaxy t o  polish the areas  of the blade t o  be welded w i t h  a 
carbide burr too l .  Spectrographic analysis shared s i l i c a  on the surface of a blade 
cleaned by the dry g lass  bead blast method. It i s  possible t h i s  s i l i c a  deposit  
contributed t o  the porosi ty  problems encountered with the f irst  dummy. Subsequent 
p a r t s  t h a t  were welded a f t e r  t he  blades had been polished w i t h  a carbide burr t o o l  
showed a s igni f icant  decrease i n  the amount of poros i ty  present i n  the weld. 

The dummy was assembled i n t o  the  prototype welding f i x t u r e  and the  
blades were electron-beam welded t o  the hub at  the  base of the  blade s l o t .  The 
blades,  shroud plugs, and outer shroud were joined by an electron-beam w a d  through 
the outer  shroud located approximately 0.100-in. frm the inner edge of the  outer  
shroud. 

Each weld j o i n t  was welded with two passes, one on each s ide of 
the par t .  
than 50% penetration; the p a r t  was then turned over and the  same weld schedule was 
applied t o  t h i s  side.  Because the two passes were made at  the same diameter, lo& 
weld penetration resul ted.  
used fo r  the dummy assembly. The weld sequence required three  chamber evacuations. 
F i r s t ,  the  hub sec t ion  of the  t r a i l i n g  edge s ide was welded; then, the  p a r t  was 
turned around and the  d isc  and shroud sections,  i n  that order, were welded on the  
leading edge s ide .  
welded on the  t r a i l i n g  edge side. 
d i s tor t ions .  

"he penetrat ion of the first pass was regulated t o  give s l i g h t l y  greater  

Figure No. 25 is  the electron-beam welding schedules 

F ina l ly  the p a r t  was again turned and the  shroud sect ion w a s  
This weld sequence was necessary t o  minimize 

After welding the f i r s t  dummy, a sect ion containing a blade welded 
t o  the hub and the  outer shroud was cut from the assembly f o r  microexamination. 
This sect ion i s  shown i n  Figure No. 26. 
graphically inspected and gas leaked checked as described i n  Section III ,E,4,a of 
t h i s  report .  

The remainder of the dummy w a s  radio- 
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Figure 25 

TRU Operational Sketch, Weld Schedule for  the Dummy Assembly 
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Figure 26 

Close-Up of the Vane Section Renoved from the  Second-Stage 
Dummy Assembly After Electron-Beam Welding 



The dummy was  cleaned with acetone and prepared f o r  brazing by 
applying Nicro braze, type TAW, around the  blade-to-hub/and outer  shroud j o i n t s .  
This braze a l loy ,  which has a propr ie ta ry  addi t ive ,  w a s  o r i g i n a l l y  developed f o r  
brazing i n  a marginal argon-type atmosphere. Experience a t  Aerojet-General has 
shown t h a t  the  additive a l so  improved wetting and flow c h a r a c t e r i s t i c  i n  vacuum 
brazing operations 

The assembly w a s  vacuum brazed a t  1 t o  5 microns, a t  a temperature 
of lgOO°F t o  1950°F f o r  10  t o  12  minutes and cooled t o  room temperature with a 
c i rcu la ted  argon atmosphere. Appendix A i s  a copy of the brazing procedure. 

The dummy was  then aged i n  accordance with Am-46604; 1350°F f o r  
8 t o  10 hours, furnace cooled t o  1200°F, then held a t  1200°F u n t i l  a t o t a l  aging 
time of 20 hours had elapsed (see Appendix B f o r  t he  aging procedure). The assembly 
was then machined i n  accordance with the  b luepr in t  requirement, Zyglo inspected, and 
sent t o  the laboratory f o r  t e s t ing .  

4. Development of Non-Destructive Test Procedures 

The following t e s t  procedures were developed i n  t h i s  program 

a. Gas Leak Check 

The gas leak  check w a s  used primarily t o  determine nondestruc- 
t i v e l y  whether the electron-beam weld fused the  end of the  blade completely t o  the  
hub and had not passed through the hub, thereby missing the  blade. 

T o  perform t h i s  check, a small tube was f i r s t  inser ted  i n t o  
one of the two 0.062-in. diameter vent, holes i n  the  blade. This tube was sealed 
t o  the  blade by the use of Apizon "Z" sea l ing  compound. 
Model Ms-9ABy w a s  used t o  pump the blade cavi ty  down t o  10-3mm pressure.  Helium 
was then sprayed around the  blade-to-hub and blade-to-outer-shroud j o i n t s  t o  check 
f o r  leaks. If a leak i s  present ,  helium en te r s  t he  vacuum system and t h e  mass 
spectrometer indicates  i t s  presence. The loca t ion  of the  leak  i s  pinpointed by 
pressurizing the  blade and applying soap bubbles t o  the  questionable area.  Each 
blade i n  the  dummy r o t o r  assembly was sepaxately t e s t e d  i n  t h i s  manner. 

A Veeco Leak Detector, 

b. Radiographic Inspection 

Radiographic inspection was used t o  determine the loca t ion  
of t he  electron-beam weld i n  the  hub as wel l  as t o  determine weld qua l i ty .  
dummy was radiographed using a 300 KV Norelco u n i t  with a 4.0 mm f o c a l  spot.  
f i lms  were exposed a t  290 KV - 10 mn a t  a 24-in. focal-fi lm dis tance f o r  13 minutes. 
A 0.005-in. l ead  screen was used i n  the  f r o n t  and back of the cas se t t e  with no 
f i l t r a t i o n  a t  the  port .  
welds on both the  hub and outer  shroud. To determine the ex ten t  of the  poros i ty  
conditions found i n  the outer shroud weld, addi t iona l  exposures were made a t  
approximately a 45 degree angle t o  the weld i n  the  outer shroud. 

The 
The 

The X-ray beam was centered over and p a r a l l e l  with the  
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C. Zyglo Inspection 

Penetrant inspection was performed a f t e r  f i n a l  machining i n  
accordance with A ~ c - ~ ~ D - 4 8 1 6 ,  Ty-pe I, Class 2. 
penetrant o i l  and allawed t o  drain f o r  one hour. 
the  p a r t  was dried at  1 5 0 7  t o  180"~. 
dry developer. 
maximum of one hour. 

The assembly was dipped i n t o  ZL-1C 

Inspection was performed a f t e r  applying ZP4 
After washing with wamu water, 

Development time was controlled from a minimum of 10 minutes t o  a 

5. Destructive Test Procedures 

a. Preparation of Metallographic Specimens 

The blade segment removed frm the dummy assembly a f t e r  welding 
was sectioned t o  produce metallographic specimens showing the  electron-beam weld i n  
the hub, the  outer shroud, and the  blade. All specimens were polished and examined 
i n  the  unetched condition and then again a f t e r  etching. 
specimens were taken from the  hub and outer shroud electron-beam welds a f t e r  brazing, 
aging, and f i n a l  machining. 

Additional metallographic 

b. Mechanical Testing 

The outer shroud *am the four blade s ide of the  dummy w a s  
The blades were then rel ieved from the hub by a chevron cu t  between each blade. 

shaped cu t  between the  blades. 
base and an adaptor f i x t u r e  was made t o  g r i p  the shroud end of the vane. 
blades were t e s t e d  i n  tension on a 60,000 lb Baldwin-Lima-:lton hydraulic t e n s i l e  
t e s t i n g  machine. When the  outer shroud sheared from the m e ,  the shroud plug was 
tapped t o  accept a 3/8-16 stud. The plug sheared from the vane during r e t e s t ing .  
Testing w a s  then continued using one blade by gripping the blade end i n  f l a t  j a w s .  
Figure No. 27 shows the  t e s t i n g  f i x t u r e  and a t e s t e d  blade. 

A 1/2-13 tapped hole was machined i n t o  the vane 
Three 

6. Results of T e s t i m  

a. Gas Leak Check 

The primary purpose of the gas leak  check was t o  determine 
whether t h e  electron-beam weld ac tua l ly  in te rsec ted  the  blade and t h e  base of the 
blade s l o t  i n  the hub. 
the  end of the blade a t  the base of the blade s l o t  and concern exis ted t h a t  the  
weld may have missed the  blade en t i r e ly  and l i e  t o t a l l y  i n  the hub. 
weld at i tsxenter ' is  only 0.050-in. wide and is  centered on the  theo re t i ca l  
diameter indicated by the  base of t he  blade s l o t s ,  the  margin f o r  e r ro r  i s  only 
half the weld width, o r  0.025-in. Therefore, the t o t a l  tolerances,  including 
the  depth t h a t  the s l o t ,  the bottoming of the blade i n t o  the s l o t ,  and the  r a d i i  
a t  the base of the EDM s l o t ,  a l l  must fall within a 0.025-in. tolerance.  

The blueprint  required t h a t  the weld must pass through 

Because the  

If the electron-beam weld misses the  in te rsec t ion  of the 
blade and the base of the s l o t ,  a very severe gas leak  would occur when t e s t ed  
e i t h e r  under vacuum or posi t ive pressure. When helium leak t e s t ed  on a mass 
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Figure 27 

Tes t  f ixtures for Tensile Testing of  Blade Samples 
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spectrometer, t he  dummy showed no leaking whatsoever i n  the blade-to-hub weld, 
However, gas leaks were found i n  the  outer  shroud a rea  on two of the  eight  blades 
tes ted.  The leaks were pinpointed by spraying acetone on the  blade area under 
vacuum and also by applying a soap solut ion on the part with the blade under a 
positive pressure. The leaks were found i n  the outer  shroud plug-to-blade weld, 
In both cases, the  leaks were at t h e  leading edge of the blade in te rsec t ion  with 
the  shroud plugs. 

The other two mock-ups were t e s t ed  and similar leaks were 
found. 
cases,  a ra the r  l a rge  gap at t h e  outer shroud-to-blade intersect ion.  
appeared t o  be approximate1;p O.OZF.in, in width and the result of w d d  shrinkage, 
Because only t h e  blade vas pressurized, it w a s  not determined whether a leak 
exibtdd a t  the leading edge in te rsec t ion  of the  blade-to-shroud. 

A visual examination of the outer shroud in  this area revealed, in m o s t  
This gap 

b. X-Ray Inspection 

The radiographic evaluation of the dummy assembly gave a 
good indica t ion  of the  amount of porosity present i n  the weld. However, a super- 
pos i t ion  e f f e c t  was noted on t h e  radiograph of the  outer  shroud weld of  the  first 
dununy. 
approximately two-inches long and as wide as t he  weld was observed. 
determine t h e  nature of this indicat ion,  another exposure was made at a 45 degree 
angle t o  t h e  weld. 
long ind ica t ion  w a ~  apparently the  combined e f f ec t  of many individual  spots  of 
porosity. 

I n  t h i s  radiograph, which was taken parallel t o  the  weld, a dark ind ica t ion  
I n  an e f f o r t  t o  

The two-inch figure No. 28 is a photograph of the X-ray f i l m .  

Figure No, 29 is a photograph of the  X-ray f i lm taken of  
the  outer  shroud weld in the  second durmtty welded and brazed showing the  fewer iso- 
l a t e d  a r e a  of porosity that exk ted .  
as noted in Figure No. 28 hap, been atkkibuted t o  the carbide burr  pol ishing of the  
blade t o  remove a l l  e f f e c t s  of glass bead b l a s t .  

This improvement i n  the  porosi ty  c a d i t i o n  

The radiographic inspection of the  outer  shroud revealed, 
in addi t ion t o  the  porosi ty  condition, one a rea  at the  leading edge of the  vane t o  
outer  shroud jo in t  t o  be cracked through the  electron-beam weld. T h i s  appeared t o  
co r re l a t e  with the  findings of t h e  gas leak check. 

Figure No. 30 is a normal X-ray exposure through the  hub 
section. 
porosity-free except f o r  one s m a l l  area i n  the  lower r i g h t  hand s i d e  of t he  photo- 
graph, 
across the  a i r f o i l  sec t ion  being superimposed i n  one area. 

All +des appear t o  be welded. The weld appears t o  be generally 

This area of less dense material is probably some separate spots  of porosi ty  

C. Zyglo Inspection 

The Zyglo inspection performed on the-dumply assembly after 
f i n a l  machining did not revea l  any surface indicat ions.  
t he  microfissuring at the na i l  head of t h e  electron-beam weld would show on the  

It was ant ic ipa ted  that 



Figure 28 

Photograph of the  X-ray Film Showing the  Porosi ty  Condition 
Which Existed i n  the  Shroud-to-Blade Weld of the  F i r s t  

Second-Stage Dummy 
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Figure 29 

Photograph of t h e  X-ray Fil~ Showi~g t h e  Poros i ty  Condition 
Exis t ing i n  the  Shroud-to-Blade Weld of t h e  Second-Stage Dummy 
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Figure 30 

Photograph of t he  X-ray Film Showing the  Electron-Beam Weld 
Area of the  Blade-to-Center-Hub J o i n t  
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I f i n a l  Zyglo. The f i s su res  were most severe i n  t h i s  n a i l  head area  which w a s  approxi- 
mately 0.100-in. below the  surface of the par t .  Because 0.100-in. was the  clean-up 
removed during f i n a l  machining, the surface examined by Zyglo should have contained 
the worst condition of f i s su r ing  i n  the p a r t .  

The reason for  the microfissures not being revealed by Zyglo 
can be a t t r i bu ted  t o  t h e i r  being too small i n  length and/or t oo  t i g h t  i n  width t o  
r e t a i n  the  Zyglo o i l .  Possibly, a more s t r ingent  penetrant inspection operation, such 
as dye check or post-emulsion Zyglo would have revealed these f i s su res .  
possible  reason f o r  the  microfissures not showing on Zyglo may be the r e s u l t  of the 
smearing tendency of t h i s  mater ia l  during machining. 
and even i n  the aged condition, i s  qui te  gummy; thus,  a great  deal  of smearing i s  
observed. 

Another 

This a l loy  machines very poorly 

d. Tensile Testing 

The objective of t e s t i n g  the heat- t reated blade segment shown 
i n  Figure No. 27 was t o  e s t ab l i sh  the mechanical s t rength of the weld j o i n t ,  and 
thereby t o  obtain an estimate of the reduction i n  j o i n t  e f f ic iency  a t t r i bu tab le  t o  
poros i ty  and microfissuring. 

Upon loading the  vane assembly i n  tension, the shroud pulled 
from the  blade at 15,000 l b  corresponded t o  a shear s t r e s s  of 67,000 ps i .  
t he  blades were r e t e s t ed  with the load being applied through the shroud plugs. These 
shroud plugs pul led out of the vane at an average load of 10,400 lbs. 
of 27,500 l b  was applied t o  the blade segment t e s t ed  by gripping the a i r f o i l  i n  f l a t  
jaws, the  1/2-in. threaded adaptor i n  the hub end broke. 

Two of 

After a load 

The blade-to-shroud weld broke a t  a lower load than ant ic ipated.  
With a minimum ultimate s t rength of 175,000 p s i  f o r  t h i s  mater ia l ,  t he  breaking 
shear s t r e s s  should have been approximately 100,000 ps i .  The reason f o r  the pre- 
mature f a i l u r e  of the shroud j o i n t  was found i n  the pull f i x t u r e  which loaded the  
j o i n t  l oca l ly ,  f a i l i n g  one s ide of the  j o i n t  prematurely. However, under much l e s s  
than maximum operating conditions, the shear s t r e s s  i n  the blade-to-shroud j o i n t  i s  
27001psi, which i s  a l so  much l e s s  than the t e s t ed  value. 

The blade-to-hub j o i n t  could not be t e s t ed  t o  destruct ion 
because the  holding f i x t u r e  f a i l e d .  
s t r e s s  i n  the b u t t  j o i n t  (blade-to-hub) was 112,000 p s i  as compared t o  a maximum 
combined l o c a l  operating s t r e s s  of 27,000 ps i .  
microfissuring and some porosity,  were acceptable f o r  t h i s  application. 

A t  the  time t h a t  the f i x t u r e  f a i l e d ,  the average 

It appeared t h a t  the  j o i n t s ,  despi te  

An examination of the f rac tured  surfaces of the t e s t ed  blades 
showed the  weld t o  be continuous around the  blade and t o  contain a nominal amount of 
scat tered porosity.  
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e .  Metallographic Inspection 

The metallographic specimens taken through the electron-beam 
weld joining the  blade t o  the  hub revealed the  two electron-beam welds t o  be con- 
tinuous with each having approximately 1.100-in. penetration. 
approximately 0.100-in, overlap (see Figure NO. 31). 
measured O.19O-in. wide and 0.100-in. deep. 
below the n a i l  head t o  0.05O-in. i n  the center  of the weld. Some poros i ty  w a s  
noted i n  the  cross-section; t h i s  had a maximum s i z e  of 0.020-in. 
pores were noted along the  edges of the  weld. 

This provided 
The nail1 head of t he  weld 

The weld width ranged:from 0.085-in. 

Many very s m a l l  

A t  the  in t e r sec t ion  of the blade t o  the  hub, the weld was 
found t o  be sound with no signs of in te r face  cracking propagating i n t o  the weld 
(see Figure No. 32). 

Microfissures, approximately 0.020-in. long, were noted 
beneath t h e  n a i l  head of the electron-beam weld. These occurred i n  the  parent metal 
immediately adjacent t o  the weld. Microfissures were a l s o  prevalant along the  length 
of the  e n t i r e  weld; these had lengths  of only 0.005-in. m a x i m u m  and were separated 
generally by O.03O-in. t o  O.05O-in. Figure No. 33 i s  a t y p i c a l  photomicrograph taken 
of the  electron-beam weld i n  the hub a f t e r  brazing and aging. 
again be observed along the edge of the weld. These were approximately of the same 
magnitude as was noted p r io r  t o  brazing and aging. 

Microfissuring can 

The metallographic specimens made through the electron-beam 
weld i n  the  outer  shroud a l s o  showed the  weld t o  be continuous. The r e s u l t s  were 
nearly i d e n t i c a l  t o  the blade-to-hub weld with microfissuring found adjacent t o  the  
najl ’read. Also, micro-cracking along the  length of the  weld had the  same length as 
those i n  the hub weld, but tended to %e m m  frequent and more open i n  appearance. 
Porosity was found t o  be concentrated along the edge of the weld and tended t o  be 
more severe than i n  the hub weld. 

Figure No. 34 i s  a photomicrograph made of t he  e lec t ron-  
beam weld i n  t he  outer shroud a f t e r  brazing and aging. The microfissures d i d  not 
appear t o  propagate during the heat  t r e a t  cycle.  Actually, the  f i s su r ing  condition 
appeared l e s s  severe i n  these micros than i n  those made p r i o r  t o  heat treatment. 

Figure No. 35 i s  a photograph of the blade-to-extension weld. 
Only one small f i s su re  near the n a i l  head of the  e lec t ron  beam weld, approximately 
0.005-in. i n  length, could be detected.’ Othef. than iohis one fi’sgure’, the’ weld 
appeared to be sound a d  hawe good pen&ration a8 w411 as fusion characteristics. 

The Nicro braze shown i n  Figure No. 36 appeared t o  be con- 
tinuous around the blade;  however, the f i l l e t  s i z e ,  which according t o  the  b luepr in t  
was t o  measure 0.020-in., measured 0.010-in. i n  some axeas. Increasing the amount 
of braze a l l o y  t o  produce a large f i l l e t  only r e su l t ed  i n  increasing the  braze 
buildup a t  the  low poin t  i n  the assembly. Apparently, the  good f l u i d i t y  of the  molten 
braze a l l o y  prevents obtaining a 0.020-in. minimum f i l l e t  s i ze .  
it can be seen tha t  the  braze penetrated the e n t i r e  depth of the  blade s l o t  i n  the  
hub, or 0.450-in. 

From Figure No. 36, 
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Figure 31 

'hotomicrograph of  Electron-Bean Weld in the Hub Section of the Dummy Rotor 
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Photomicrograph 

Figure 32 

of Electron-Beam Weld Joint. .  at 
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Figure 33 

Photomicrograph of the  Electron-Beam Veld in the  Hub Sect ion 
of the  Dummy Rotor Showing t h e  Microfissuring Condition 

Immediately Below the N a i l  Head 
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Figure 34 

Photomicrograph of t h e  Electron-Beam Weld i n  the Outer Shroud 
Section After Brazing, Aging, and Finish Machining 



Figure 35 

Photomacrograph of t h e  Electron-Beam Weld Joining t he  Blade 
t o  t h e  Trailing Edge Extension 



Mag: 

Figure 36 

Fhotomicrograph Showing Nicro Braze F i l l e t  S i z e  and Penetration 
i n  t h e  Hub Sect ion of t h e  Second-Stage 3ummy Assembly 
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A metallographic evaluation of the e l e c t r i c a l  discharge machined 
surface d id  not show any affected surface layer .  I n i t i a l  metallographic s tudies  made 
on some of the first vane s l o t s  produced by e l e c t r i c a l  discharge machining revealed 
surface i r r e g u l a r i t i e s  approximately 0.002-in. deep. The coating or mater ia l  i n  the 
affected zone caused problems during EB welding and it was found necessary t o  mech- 
an ica l ly  pol i sh  the surface t o  remove approximately 0.002-in, The maximum allowable 
gap width of 0.008-in. was maintained even with t h i s  mater ia l  removed. 

7. Conclusions 

The fabr ica t ion  of the dummy ro to r s  fully confirmed the conclusions 
of the  pre-dummy r o t o r  weld development. It a l s o  proved t h a t  the  EB weld j o i n t s  
c a d  be made su f f i c i en t ly  strong fopapplication t o  the  M-1 oxidizer turbine ro to r s  
and s t a t o r s .  Optimum weld schedules were developed and too l ing  demonstrations were 
achieved. 

F. FABRICATION OF ROTOR ASSEMBLIES 

The dummy ro to r  program proved t o  be an excel lent  preparation f o r  the 
manufacturing of the prototype ro to r s  and s t a to r s .  The techniques developed i n  t h e  
manufacturing of the dummies and the tooling experience w a s  d i r ec t ly  applied t o  t h e  
prototype hardware. The problems encountered i n  the  fabr ica t ion  of the  prototype 
hardware were e i t h e r  i d e n t i c a l  o r  of a similar nature t o  those encountered fabr ica t ing  
the  dummy ro tors .  
hardware has been abbreviated t o  avoid redundancy. 

Therefore, the discussion of the  fabr ica t ion  of the prototype 

Ut i l iz ing  the machining, cleaning, and welding procedures es tabl ished i n  
the  dummy r o t o r  program, the  f i r s t - s t age  and second-stage ro to r s  were rough f a b r i -  
cated. Figure No. 37 shows the  EB weld f i x t u r e  used f o r  welding the second-stage 
ro tor .  
erosion of the shrouds and t o  minimize d is tor t ion .  The weld schedules u t i l i z e d  f o r  
the  EB welding of the prototype blades sheet metal sect ion t o  the t r a i l i n g  sect ion,  
the  EB welding the prototype blades t o  prototype discs  and shrouds a re  sham i n  
Figures No. 20 and No, 25, and Appendix A. These schedules were i d e n t i c a l  t o  those 
used fo r  welding the dummy ro tors .  

C o p p e r  chill-down blocks were used extensively as a heat sink t o  prevent 

X-ray inspection revealed a n m i n a l  amount of porosity.  

V i s u a l  inspection of the f i r s t - s t age  ro to r  showed large gaps, up t o  
0.025-in., on a number of blades between the blade and the shroud, with a cracked 
j o i n t .  The la rge  cracks were a t t r ibu ted  t o  clearance accumulation of the shroud- 
to-blade , bWe-to-plug,  plug-to-blade, and blade-to-shroud clearances, r e su l t i ng  
from weld shrinkage. 
blades and plugs were plated with pure nickel t o  reduce the i n i t i a l  assembly 
clearance before welding. 
0.008-in. proved t o  be excessive. 
f i l l e d  with pure nickel  shim stock pr ior  t o  brazing t o  assure a good braze j o i n t .  

To minimize the clearance accumulation i n  fu ture  assemblies, 

The drawing requirement for. a maximum clearance of 
Areas where the large gaps already exis ted were 



Figure 37 

Electron-Beam Weld Fixture  for Second-;, tage R o t o r  
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Excess braze tended t o  accumulate a t  the t r a i l i n g  edge and close the  
t r a i l i n g  edge r e l i e f  (see Figure No. 38). 
such assemblies with the leading edge dam. 

For this reason, it is b e t t e r  t o  braze 

Figures No. 38 and No. 39 show the major cha rac t e r i s t i c s  of the two 
r o t o r s  i n  the  f i n a l  machined condition. 

G. FABRICATION OF STATOR ASSEMBLIES 

The f ab r i ca t ion  experience gained with the  dummy ro to r s  and with the  
p&ototype ro to r s  was d i r e c t l y  applicable t o  the f ab r i ca t ion  of the s t a t o r s  with the 
exception of the  EB welding of the nozzle. 
schedule development was necessary because of the required t o t a l  penetratinn depth 
of 3.16-in., or 1.8-in. per  beam. This weld development was conducted using nozzle 
sarnples containing three nozzle vanes (see Figure No. 40), which were welded i n  the  
prototype weld fixture shown i n  Figure No. 41. Despite the extensive use of copper 
chi l l -blocks,  excessive melting occurred with weld schedules giving the  f u l l  spike 
length of' 1.8-in. 

I n  the  l a t t e r  instance,  considerable weld 

Figure No.  40 shows the  effects  of t h i s  excessive melting. Further weld 
development indicated t h a t  f u l l  penetration of the shroud with beams from both s ides  
could be obtained without excessive melting provided high (55  KV) beam power was 
used and an Inconel 718 weld wire was placed i n t o  the vane s l o t  as shown i n  Figure 
No. 42. 
allowed f o r  the second beam close t o  the end of the vane. Table I shows the  success- 
ful weld schedules used t o  weld t h e  prototype nozzle assembly. 

This s top wire prevented the end of the vane from melting off and thus 

Figures No. 43 and No. & show the  major aver-aU dimensions i n  the f i n a l  
machined condition f o r  the nozzle and vane s t a t o r  assemblies. 

X-ray inspection revealed porosity i n  the weld areas  of both s ta tors .  
Again, the braze was accumulated at  the  t r a i l i n g  of the s t a t o r  vanes because of 
the hardware posi t ion during brazing. 
necessi ta ted t h a t  the s t a to r  assemblies be brazed i n  an  argon atmosphere, r a the r  
than a vacuum; however, there  was no noticeable e f f e c t  upon the braze qual i ty .  

IV. CONCWSIONS AND FECOMMENDATIONS 

The m a i l a b i l i t y  of brazing furnaces 

The process of electron-beam (EB) welding was  used t o  f a s t en  hollow sheet 
metal blades t o  r o t o r  d i sc s  as wel l  as t o  ro to r  and s t a t o r  shrouds. The bas ic  
design philosophy, although an advanced technology, proved successFul f o r  the M-1 
oxidizer  turbine.  

High i n i t i a l  tool ing cos ts  necessi ta te  a recommendation that the  design be 
used only f o r  appl icat ion with six or more uni t s .  

Further m a t e r i d  and weld development of Inconel 718 i s  needed t o  reduce 
microfissuring and porosi ty  &f t h i s  design concept i s  t o  be used f o r  very high 
s t r e s s  components. 
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Figure 9 
Rotor Assembly - Stage 1 
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figure 39 

Rotor Assembly - Stage 2 

Page 57 



Figure 40 

Excessive Melting on Nozzle Weld Samples 
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Figure 41 

Llectron-Beam geld  F ix ture  f o r  Nozzle 
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Figure 42 

Nozzle Electron-Beam Weld Spike Positions 
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WEID SC"HEDTKGE FOR N0ZZI.E ASSEMBLY 

EL& 'Y'oltzge - 55 Fr 

Slope Rate - 3 

Milliamperes - 320 
Focus Po% %efr' 308 "AMPS" 5.6 

Filament P a r e n t  - 58 

Movement of Part (IF'M) - 35 

Cirection - Right 

G-m t o  Work Distance - 3.500 Inches 

Filament Size - 500 MA 

Filament t o  Cathode Distance - .381 Inches 
Spacer - 350 MA 

Anode Type - 60 KV 

cathode Type  - 500 

A.ri&.e of Gzn t o  Work Piece - 90" 

Pawer Supply Frequency - 60 Cycle 440V 

Page 61 



Figure 43 

Piozzle Assembly 
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Figure 44 

Reversing Vane Assembly 
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Extremely close tolerance and system matching of the blade and the  s l o t  a r e  
cos t ly  manufacturing methods. 
be evaluated t o  produce a design t h a t  would eliminate any need f o r  close tolerances 
and system matching without imposing excessive too l ing  costs .  

In  fu ture  designs, other methods of attachment should 
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FURNACE BRAZING PROCEDURE 

1. 

2. 

30 

4, 

5. 

6. 

7. 

8. 

TRW INC. 
23555 Eucl id Avenue 
Cleveland 17, Ohio 

Scope: ,To establ ish the brazing procedure fo r  the l i s t e d  Inconel 718 assemblies, 

Custornert Aerojet Generat Corporation, Sacramento, Cai i f o r n i a  

Purchase Order No,: 150025 

Applicable Assemblies: 
F.R. C.P.N. Descri p t i  on 

401 200 286528- 1 1st Stg. Turbine Disc 
401 225 286529- 9 Dumny Rotor 
401 250 2865 3 3- 1 2nd Stg. 'Turbine Disc 
401 275 2865 32-9 Dummy Rotor 
401 300 286545-9 Oxidizer Turbine Stator Vane 
401317 2865 1 3- 1 gB Turbine Nozzle Assembly 

Bluepr in t  Requirementst 
i n  vacuum furnace a t  1 t o  5 microns, Hold a t  1900 t o  1950 F . f w  10 minutes, then cooled 
a t  roan temperature, 
Materialsr 

6.1 

Af ter  welding, braze blades per aepl icable por t ion o f  A n S  2675 

Type o f  base material being brazed: 
AGC 44151 (Inconel 718) 
AGC 44152 (Inconel 718) 

6.2 Type of brazing al loy:  AMs 4777 (LMW) 
Nicrobraze (LMW) i s  braze s l l o y  pe+ AMs 4777 modified by addi t ion o f  propr ie tary  
flux. 

6.3 Binder: Heta chem 4 

Equipment: 
located a t  TRW, '23555 Eucl id Ave., Cleveland 17, Ohio 

Assemblies shal l  be brazed i n  an Ipsen Vacuum Furnace VFC 48 

Procedure f o r  brazinq: 

8.1 Assembly shal l  be wiped clean wi th  acetone. 

x 40 x 36 (24) 

8.2 Apply braze material i n  a 0,090" f i l l e t  completely around the a i r f o  1 a t  the 
in te r face  of the vane t o  the w t e r  shroud and a t  the ih ter face o f  the vane t o  
the inner shroud or disc, 

8.3 Assembly par t  on support type f ixtur in9.  

8.4 Place assembly i n t o  furnace. 
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8.5 Attach two monitor thermocouples t o  th i ckes t  and th innest  cross sect ions o f  
assembly. 

Attach 6 Inconel 718 sheet stock (AGC 44152) t e n s i l e  specimens t o  assembly. 

Pump down t o  1 micron or less p r i o r  t o  a p p l i c a t i o n  o f  heat. 

Equalize a t  1000°F + 25 and the? again a t  174OoF + 10. 
5 microns, the heat-shall be turned o f f  t o  a1 low The furnace vacuum t o  rccove 
t o  2 microns. Equal iz ing temperature s h a l l  be maintained fo r  f i f t e e n  minute:  
o r  u n t i l  the pressure reading i s  less than 2 microns,which ever i s  longer. 

Raise temperature t o  1925OF + 25 as r a p i d l y  as poss ib le  and ho ld  w i th in  t h i s  
temperature range f o r  I O  mini7tes. 

Back f i l l  w i t h  argon (99.995 p u r i t y )  and cool t o  1750°F. 

Turn f a n  on when temperature reaches 1 750°F and cool t o  below 150°F. 

Attach a t h i r d  thermocouple t o  f i x tu re .  

8.6 

8.7 

8.8 I f  pressure exceeds 

8.9 

8.10 

8.1 1 

9. Braze requirements: 0.020'' t o  0.060'@ braze f i l l e t s  a t  blade t o  d isc and blade t o  
shroud points. 

10. Inspection: Braze q u a l i t y  shal l  be v i s u a l l y  inspected f o r  conformance t o  Para- 
graph 9. 

brazed i n  accordance w i t h  Section 8. 
11. Rework: Areas with lack of braze i n  excess of the l i m i t s  spec i f i ed  s h a l l  be re -  

12. Records: The S t r i p  Chart shal l  be a record o f  the temperature i nd i ca ted  by the 
thermocouples speci f ied i n  Paragraph 8.5 and the f o l l o w i n g  in format ion s h a l l ' b e  
recorded on the S t r i p  Chart. 

1. Date o f  treatment. 
2. 
3. Furnace type and i d e n t i t y .  
4. Part number and s e r i a l  number. 
5. Time scale o f  S t r i p  Chart. 

Spec i f i ca t i on  t o  which p a r t  was brazed. 

Metal l u r g i  c a l  Engineer 
Mater ia ls  Engineering Department 
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HEAT TREAT PROCEDURE 

TRW INC. 
23555 Eucl id Avenue 
Cleveland 17, Ohio 

1, Scope: To establ ish an Aging Procedure f o r  l i s t e d  Inconel 718 Assemblfes, 

2. Customr: Aerojet General Corporation, Sacramento, Cali fornia. 

3. Purchase Order NO.: 150025 

4. Applicable Assemblies: 

F.R. C.P.N. 
40 1 200 286528- 1 
401 225 286529-9 
401 250 286533- 1 
401 275 286532-9 
\Q1300 2 86545-9 

01317 28651 3-1 gB 
5. Bluepr int  Requirements: R f  t e r  brazing, age per 

Descriat ion 
1st Stg. Turbine Disc 
Dumny Rotor 
2nd Stg. Turbine Disc 
Dumny Rotor 
0xi d i  zer Turbi ne Stator Wane 
Turbine Nozzle Assembly 

AGC-4660km 

6. Base Material: ACC-44151 Inconel 718 
AGC-44152 Inconel 718 

7, Equipment: Ipsen Vacuum Furnace - VFC 48 x 48 x 36 (24) 
Located a t  - TRW, 23555 Eucl id Ave., Cleveland 17, Ohio 

8. Procedure fo r  Aging. 

8.1 Wash w i t h  acetone. 

8.2 

8.3 

Assemble on support type f ixturrng. 

Attach two  monitor thermocouples t o  th ickest and thinnest cross sections of 
assembl y; at tach a t h i r d  thermocouple t o  .f i x t u r i  ng. 

8.4 Attach 6 Inconel 718 Sheet Stock (AGC-44152) tens i le  specimens t o  assembly. 

8.5 Pump down t o  1 micron or less pr io r  t o  appl icat ion o f  heat. 

8.6 Equalize a t  1000 OF + 25. 
turned o f f  t o  allow-the furnace vacuum t o  recover t o  below 10 microns.. 5quaI- 
i z i n g  temperature sha l l  be maintained for - f i f t e e n  minutes or unt i l  the pressure 
reading i s  less than 10 microns which ever i s  longer, 

Raise temperature t o  1350°F, 2 15, ho ld  a t  1350°F for  8 t o  10 hours, furnace cool 
t o  1200°F, ho ld a t  1200°F u n t i l  P t o t a l  aging time of 20 hourk has.elapced (1350°F 
4 furnace coot + 1200~F). 

I f  pressure exceeds 100 microns the heat sha l l  be 

8.7 
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8.8 Back fill w i t h  argon (99.995 Pur i ty) ,  and fan cool t o  1J;OOF before discharging 
from furnace. 

, 

9. Inspection: 

9.1 Check and record hardness of  t e s t  samples and assembly; Rc 38 min. required. 

9.2 Send t e s t  samples t o  Mater ia ls  Engineering Laboratory f o r  t e s t i n g  t o  requirements 
o f  AGC STO 4861 paragraph 3.2.1. 

I 10. Records: The S t r i p  Chart sha l l  be a record of t he  temperature ind ica ted  by the 
thermocouples speci f ied i n  paragraph 8.4 and the fo l l ow ing  in format ion she1 1 
be recorded on the S t r i p  Chart. 

1. Date o f  treatment. 
2. 
3. Furnace type and i d e n t i t y .  
4. Par t  number and s e r i a l  number. 
5 .  Time scale o f  S t r i p  Chart. 
6, Hardness o f  p a r t  and t e s t  samples. 

Spec i f i ca t ion  to  which p a r t  was heat treated, 

Meta l lu rg ica l  Engineering 
Mater ia ls  Engineering Dept. 



Y. A. Tonazic ( 3  Copies) 
NASA 
ievis Research Center 
21000 Brookpark Road 
Cleveland, chi0 44335 
Nail Stop 5oO-joS 

E. iiinckley (1 COPY) 
Y d l  s top  goo-a0 

Patent Counsel (1 Copy) 
Hail Stop 501-2 

kris ~ibrary (2 copies)  
Y d l  Stop 60-3. 

M. J. B s t m a r m  (1 COPY) 
Mail s top  5-9 

Y. L. t i t e r a r t  (1 Copy) 
nail s top  5-9 

F d l  s top  501-1 SNPO-c 

tkjor _. Karalie (1 Copy) 
AFSC Liaison Office 
!;ail Stop 4-1 

J. C. Montgomery (1 Copy) 

Office of Re l i ab i l i t y  and 

Mail Stop W 2 0 3  

Y. F. Dankhoff (1 Copy) 
&'ail Stop 3 1 3  

F. J. X t e e  (1 Copy) 
Mail Stop 25-1 

D. F. Ldnge (1 Copy) 
Mail Stop 501-1 

J. E. Fagar (1 Copy) 
Ksil Stop 49-1 

D. 1). Scheer (1 Copy) 
F h i l  Stop goo-305 

. iual i ty  b u r a n c e  (1 Copy) 

C. F. &hrk (1 Copy) 
F a i l  Stop 500-335 

R i i A  Representative ( 6  Copies) 
N L A  Sc ien t i f i c  and Technical 

Box 5720 
Betbesaa, V q l a n d  

Library (1 Copy) 
N h A  
George C. 1;arsMll Space Fl ight  Center 
Yuntsville, A l a b a m a  358U 

Library (1 Copy) 
NASA 
Yestern Support Office 
150 Pico Boulevard 
 anta M o n i c a ,  Cal i fornia  q0406 

Library (1 Copy) 
J e t  Propulsion Laboratory 
4800 h k  Grove Drive 
Pasadena. Cal i fornia  9ll03 

A. 0. Ti~chler (2 C o p i 6 d  
Code FP - NASA Headquarters 
Washington, D. C. 20% 

Y. Y. Yilcox (1 Copy) 
Code W - NASA Eeadquarte- 
Washington, D. C. 2Co546 

J. Y. Thomas, Jr. (5 Copiad 
I - G E  
NASA 
George C. Farshall S a c e  Fl ight  C a t e r  
Buntsville. Alabama 

Information Fac i l i t y  

E. U. QmersaU (1 Copy) 
EA.% 
Nission Analys i6  Division 
Office of Advanced Research and Technology 
?:offett Field,  Cal i fornia  94035 

ET. Keith Boyer (i Copy) 
Loa ALamoEi Sc ien t i f i c  Laboratory 
CHF-9 
P. 0. Box 1663 
Los Alamos, New Uudco 

A. Schmidt (1 Copy) 
National Bureau of Standprds 
Cryogenic Division 
Boulder, Colorab 

Library (1 Copy) 
%SA 
AIUW Research Canter 
Hoffett Field, California  94035 

Library (1 Copy) 
EASA 
Fl igh t  Research knter 
P. 0. Box 273 
Ednrrds Am, California  93523 

Library (1 Copy) 
NESk 
Goddard Space Fl ight  Center 
Greenbelt, Fkryland 20771 

Library (1 Copy) 
6LA 
Ian&ley Xeaearch Center 
Langley S ta t ion  
Rampton, Virginia 235.5 

Library (1 Copy) 
NASA 
k e d  Spacecraft Center 
Houston. Texaa 77D% 

chemical Propulsion InfoAtiIh 
&-CY (1 Corn) 

J o b  Hopkins Univemity 
Applied Physics laboratory 
862l Gtorgia Avmue 
S i l v e r  Swing. Naryland 

Robert 0. Bullock (1 Copy) 
Garret t  Corporation 
Airesearch Manufacturing Company 
402 S .  356th S t r e e t  
Phoenix, A I - ~ ~ M  850% 

Library 2ept. w-326 (1 Copy) 
Zocketdyne 
Xv i s ion  of Eortb American Aviation 
6633 Canoga Avenue 
Canoge Park, California  91* 

J o b  S tan i t z  (1 Copy) 
Ihonpon-RamAooldridge, Inc. 
23555 Euclid Avenue 
Cleveland, Ohio &ll7 

D r .  G. Wislicenus (1 Copy) 
Peon S ta t e  University 
Naval Orduance Laboratory 
University ,Park, Pennsylvbnia 

ET. A. AcDsta (1 Copy) 
Cal i fornia  I n s t i t u t e  of Technology 
vO1 East Cal i foroia  S t r e e t  
Paeadena, Cal i fornia  

Dr. E. B. Konecci (1 Copy) 
NASA 
Executive Office of t he  P t e s i d m t  
Executive Off ice  Building 
Yashington. I). C. 



RWRT NASA CR Nl2 DISTRIBUTION LIST (Cont'd) 

Dr. M. Vavra (1 Copy) 
Naval Post-Graduate School 
Monterey, Cal i fornia  

H. V. Main (1 Copy) 
A i r  Force Rocket Pmpulsion Laboratory 
Edwards A i r  Force Ease 
Edwards, Cal i fornia  

Dr. George Serovy ( 1  COPY) 
Iowa S t a t e  University 
A m e s ,  Iowa 

T. Iura (1 Copy) 
Aerospace Corporation 
24W h t  El Segundo Blvd. 
P. 0. Box 95085 
1.05 Angeles, Ca l i fo rn ia  90045 
P r a t t  & Uhitney Ai rc ra f t  

Corporation (1 Copy) 
Flor ida Research and Development 

Center 
P. 0. Box 2691 
West Palm Beach Flor ida 3902 

D r .  H. J. Zucrow (1 Copy) 
Purdue University 
Lafayet te ,  Indiana 47907 


